
UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 1

UNIT V VIRTUAL MACHINES AND MOBILE OS

Virtual Machines - History, Benefits and Features, Building Blocks, Types of Virtual Machines

and their Implementations, Virtualization and Operating-System Components; Mobile OS - iOS and

Android.

Virtual Machines

Fundamental idea – abstract hardware of a single computer into several different execution environments

 Similar to layered approach

 But layer creates virtual system (virtual machine, or VM) on which operation systems or applications

can run

Several components

 Host – underlying hardware system

 Virtual machine manager (VMM) or hypervisor – creates and runs virtual machines by providing

interface that is identical to the host (Except in the case of paravirtualization)

 Guest – process provided with virtual copy of the host, Usually an operating system

Single physical machine can run multiple operating systems concurrently, each in its own virtual machine.

The implementation of VMMs varies greatly. Options include the following:

• Hardware-based solutions that provide support for virtual machine creation and management via firmware.

These VMMs, which are commonly found in mainframe and large to midsized servers, are generally known

as type 0 hypervisors. IBM LPARs and Oracle LDOMs are examples.

• Operating-system-like software built to provide virtualization, including VMware ESX(mentioned above),

Joyent SmartOS, and Citrix XenServer. These VMMs are known as type 1 hypervisors.

• General-purpose operating systems that provide standard functions as well as VMM functions, including

MicrosoftWindows Server with HyperV and RedHat Linux with the KVM feature. Because such systems

have a feature set similar to type 1 hypervisors, they are also known as type 1.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 2

• Applications that run on standard operating systems but provide VMM features to guest operating systems.

These applications, which include VMware Workstation and Fusion, Parallels Desktop, and Oracle Virtual-

Box, are type 2 hypervisors.

• Paravirtualization, a technique in which the guest operating system is modified to work in cooperation

with the VMM to optimize performance.

• Programming-environment virtualization, in which VMMs do not virtualize real hardware but instead

create an optimized virtual system. This technique is used by Oracle Java and Microsoft.Net.

• Emulators that allow applications written for one hardware environment to run on a very different

hardware environment, such as a different type of CPU.

• Application containment, which is not virtualization at all but rather provides virtualization-like features

by segregating applications from the operating system. Oracle Solaris Zones, BSD Jails, and IBM AIX

WPARs “contain” applications, making them more secure and manageable.

History

Virtual machines first appeared commercially on IBM mainframes in 1972.

Virtualization was provided by the IBM VM operating system. This system has evolved and is still

available.

IBM VM370 divided a mainframe into multiple virtual machines, each running its own operating system.

A major difficulty with the VM approach involved disk systems. Suppose that the physical machine had

three disk drives but wanted to support seven virtual machines. Clearly, it could not allocate a disk drive to

each virtual machine.

The solution was to provide virtual disks-termed minidisks in IBM’s VM operating system. The minidisks

are identical to the system’s hard disks in all respects except size. The system implemented each minidisk by

allocating as many tracks on the physical disks as the minidisk needed.

Once the virtual machines were created, users could run any of the operating systems or software packages

that were available on the underlying machine.

For the IBM VM system, a user normally ran CMS a single-user interactive operating system.

For many years after IBM introduced this technology, a formal definition of virtualization helped to

establish system requirements and a target for functionality.

The virtualization requirements stated that:

1. AVMM provides an environment for programs that is essentially identical to the original machine.

2. Programs running within that environment show only minor performance decreases.

3. The VMM is in complete control of system resources.

These requirements of fidelity, performance, and safety still guide virtualization efforts today.

By the late 1990s, Intel 80x86 CPUs had become common, fast, and rich in features.

Accordingly, developers launched multiple efforts to implement virtualization on that platform.

Both Xen and VMware created technologies, still used today, to allow guest operating systems to run on the

80x86.

Since that time, virtualization has expanded to include all common CPUs, many commercial and open-

source tools, and many operating systems.

For example, the open-source VirtualBox project (http://www.virtualbox.org) provides a program than runs

on Intel x86 and AMD64 CPUs and on Windows, Linux, Mac OS X, and Solaris host operating systems.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 3

Possible guest operating systems include many versions of Windows, Linux, Solaris, and BSD, including

even MS-DOS and IBM OS/2.

Benefits and Features

One important advantage of virtualization is that the host system is protected from the virtual machines,

just as the virtual machines are protected from each other.

A virus inside a guest operating system might damage that operating system but is unlikely to affect the host

or the other guests. Because each virtual machine is almost completely isolated from all other virtual

machines, there are almost no protection problems.

Two approaches to provide sharing have been implemented. First, it is possible to share a file-system

volume and thus to share files. Second, it is possible to define a network of virtual machines, each of

which can send information over the virtual communications network.

The network is modelled after physical communication networks but is implemented in software. Of course,

the VMM is free to allow any number of its guests to use physical resources, such as a physical network

connection (with sharing provided by the VMM), in which case the allowed guests could communicate with

each other via the physical network.

One feature common to most virtualization implementations is the ability to freeze, or suspend, a running

virtual machine.

But VMMs go one step further and allow copies and snapshots to be made of the guest.

The copy can be used to create a new VM or to move a VM from one machine to another with its current

state intact.

The guest can then resume where it was, as if on its original machine, creating a clone.

The snapshot records a point in time, and the guest can be reset to that point if necessary (for example, if a

change was made but is no longer wanted).

Often, VMMs allow many snapshots to be taken. For example, snapshots might record a guest’s state every

day for a month, making restoration to any of those snapshot states possible. These abilities are used to good

advantage in virtual environments.

A virtual machine system is a perfect vehicle for operating-system research and development.

Furthermore, the operating system runs on and controls the entire machine, meaning that the system must be

stopped and taken out of use while changes are made and tested. This period is commonly called system-

development time. Since it makes the system unavailable to users, system-development time on shared

systems is often scheduled late at night or on weekends, when system load is low.

A virtual-machine system can eliminate much of this latter problem. System programmers are given their

own virtual machine, and system development is done on the virtual machine instead of on a physical

machine.

Normal system operation is disrupted only when a completed and tested change is ready to be put into

production. Another advantage of virtual machines for developers is that multiple operating systems can run

concurrently on the developer’s workstation.

This virtualized workstation allows for rapid porting and testing of programs in varying environments. In

addition, multiple versions of a program can run, each in its own isolated operating system, within one

system.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 4

A major advantage of virtual machines in production data-center use is system consolidation, which

involves taking two or more separate systems and running them in virtual machines on one system. Such

physical-to-virtual conversions result in resource optimization, since many lightly used systems can be

combined to create one more heavily used system.

Consider, too, that management tools that are part of the VMM allow system administrators to manage many

more systems than they otherwise could. A virtual environment might include 100 physical servers, each

running 20 virtual servers. Without virtualization, 2,000 servers would require several system

administrators. With virtualization and its tools, the same work can be managed by one or two

administrators.

One of the tools that make this possible is templating, in which one standard virtual machine image,

including an installed and configured guest operating system and applications, is saved and used as a source

for multiple running VMs.

Other features include managing the patching of all guests, backing up and restoring the guests, and

monitoring their resource use. Virtualization can improve not only resource utilization but also resource

management.

Some VMMs include a live migration feature that moves a running guest from one physical server to

another without interrupting its operation or active network connections.

If a server is overloaded, live migration can thus free resources on the source host while not disrupting the

guest.

Similarly, when host hardware must be repaired or upgraded, guests can be migrated to other servers, the

evacuated host can be maintained, and then the guests can be migrated back.

This operation occurs without downtime and without interruption to users.

Building Blocks

Although the virtual machine concept is useful, it is difficult to implement. Much work is required to

provide an exact duplicate of the underlying machine. This is especially a challenge on dual-mode systems,

where the underlying machine has only user mode and kernel mode. In this section, we examine the building

blocks that are needed for efficient virtualization.

VMMs use several techniques to implement virtualization, including trap-and-emulate and binary

translation.

One important concept found in most virtualization options is the implementation of a virtual CPU (VCPU).

The VCPU does not execute code. Rather, it represents the state of the CPU as the guest machine believes it

to be.

For each guest, the VMM maintains a VCPU representing that guest’s current CPU state. When the guest is

context-switched onto a CPU by the VMM, information from the VCPU is used to load the right context,

much as a general-purpose operating system would use the PCB.

Trap-and-Emulate

On a typical dual-mode system, the virtual machine guest can execute only in user mode (unless extra

hardware support is provided).

The kernel, of course, runs in kernel mode, and it is not safe to allow user-level code to run in kernel mode.

Just as the physical machine has two modes, however, so must the virtual machine.

Consequently, we must have a virtual user mode and a virtual kernel mode, both of which run in physical

user mode. Those actions that cause a transfer from user mode to kernel mode on a real machine (such as a

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 5

system call, an interrupt, or an attempt to execute a privileged instruction) must also cause a transfer from

virtual user mode to virtual kernel mode in the virtual machine.

How can such a transfer be accomplished? The procedure is as follows: When the kernel in the guest

attempts to execute a privileged instruction, that is an error (because the system is in user mode) and causes

a trap to the VMM in the real machine.

The VMM gains control and executes (or “emulates”) the action that was attempted by the guest kernel on

the part of the guest. It then returns control to the virtual machine. This is called the trap-and-emulate

method and is shown in Figure 16.2. Most virtualization products use this method to one extent or other.

With privileged instructions, time becomes an issue. All non-privileged instructions run natively on the

hardware, providing the same performance for guests as native applications. Privileged instructions create

extra overhead, however, causing the guest to run more slowly than it would natively. In addition, the CPU

is being multiprogrammed among many virtual machines, which can further slowdown the virtual machines

in unpredictable ways.

Binary Translation

Some CPUs do not have a clean separation of privileged and non-privileged instructions.

Let’s consider an example of the problem.

The command popf loads the flag register from the contents of the stack.

If the CPU is in privileged mode, all of the flags are replaced from the stack.

If the CPU is in user mode, then only some flags are replaced, and others are ignored.

Because no trap is generated

if popf is executed in user mode, the trap-and-emulate procedure is rendered useless.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 6

Binary translation is fairly simple in concept but complex in implementation. The basic steps are as follows:

1. If the guest VCPU is in user mode, the guest can run its instructions natively on a physical CPU.

2. If the guest VCPU is in kernel mode, then the guest believes that it is running in kernel mode.

The VMM examines every instruction the guest executes in virtual kernel mode by reading the next few

instructions that the guest is going to execute, based on the guest’s program counter.

Instructions other than special instructions are run natively.

Special instructions are translated into a new set of instructions that perform the equivalent task, for example

changing the flags in the VCPU.

Binary translation is shown in Figure 16.3. It is implemented by translation code within the VMM.

The code reads native binary instructions dynamically from the guest, on demand, and generates native

binary code that executes in place of the original code.

The basic method of binary translation just described would execute correctly but perform poorly.

Fortunately, the vast majority of instructions would execute natively.

But how could performance be improved for the other instructions? We can turn to a specific

implementation of binary translation, the VMware method, to see one way of improving performance. Here,

caching be translated is cached. All later executions of that instruction run from the translation cache and

need not be translated again. If the cache is large enough, this method can greatly improve performance.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 7

Types of Virtual Machines and Their Implementations

Type 0 Hypervisor

Type 0 hypervisors have existed for many years under many names, including “partitions” and “domains”.

They are a hardware feature, and that brings its own positives and negatives.

The VMM itself is encoded in the firmware and loaded at boot time. In turn, it loads the guest images to run

in each partition. The feature set of a type 0 hypervisor tends to be smaller than those of the other types

because it is implemented in hardware.

In the control partition, a guest operating system provides services (such as networking) via daemons to

other guests, and the hypervisor routes I/O requests appropriately.

Some type 0 hypervisors are even more sophisticated and can move physical CPUs and memory between

running guests.

In these cases, the guests are paravirtualized, aware of the virtualization and assisting in its execution. For

example, a guest must watch for signals from the hardware or VMM that a hardware change has occurred,

probe its hardware devices to detect the change, and add or subtract CPUs or memory from its available

resources.

Because type 0 virtualization is very close to raw hardware execution, it should be considered separately

from the other methods discussed here.

A type 0 hypervisor can run multiple guest operating systems (one in each hardware partition).

All of those guests, because they are running on raw hardware, can in turn be VMMs. Essentially, the guest

operating systems in a type 0 hypervisor are native operating systems with a subset of hardware made

available to them. Because of that, each can have its own guest operating systems (Figure 16.5).

Other types of hypervisors usually cannot provide this virtualization-within-virtualization functionality.

Type 1 Hypervisor

Type 1 hypervisors are commonly found in company data centers and are in a sense becoming “the data-

center operating system.”

They are special-purpose operating systems that run natively on the hardware, but rather than providing

system calls and other interfaces for running programs, they create, run, and manage guest operating

systems.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 8

In addition to running on standard hardware, they can run on type 0 hypervisors, but not on other type 1

hypervisors. Whatever the platform, guests generally do not know they are running on anything but the

native hardware.

Type 1 hypervisors run in kernel mode, taking advantage of hardware protection.

Where the host CPU allows, they use multiple modes to give guest operating systems their own control and

improved performance.

They implement device drivers for the hardware they run on, because no other component could do so.

Because they are operating systems, they must also provide CPU scheduling, memory management, I/O

management, protection, and even security.

Frequently, they provide APIs, but those APIs support applications in guests or external applications that

supply features like backups, monitoring, and security. Many type 1 hypervisors are closed-source

commercial offerings, such as VMware ESX while some are open source or hybrids of open and closed

source, such as Citrix XenServer and its open Xen counterpart.

By using type 1 hypervisors, data-center managers can control and manage the operating systems and

applications in new and sophisticated ways. An important benefit is the ability to consolidate more operating

systems and applications onto fewer systems.

In many ways, they treat a guest operating system as just another process, able it with special handling

provided when the guest tries to execute special instructions.

Type 2 Hypervisor

Type 2 hypervisors are less interesting to us as operating-system explorers, because there is very little

operating-system involvement in these application level virtual machine managers. This type of VMM is

simply another process run and managed by the host, and even the host does not know virtualization is

happening within the VMM.

Type 2 hypervisors have limits not associated with some of the other types. For example, a user needs

administrative privileges to access many of the hardware assistance features of modern CPUs. If the VMM

is being run by a standard user without additional privileges, the VMM cannot take advantage of these

features. Due to this limitation, as well as the extra overhead of running a general-purpose operating system

as well as guest operating systems, type 2 hypervisors tend to have poorer overall performance than type 0

or 1.

As is often the case, the limitations of type 2 hypervisors also provide some benefits. They run on a variety

of general-purpose operating systems, and running them requires no changes to the host operating system. A

student can use a type 2 hypervisor, for example, to test a non-native operating system without replacing the

native operating system. In fact, on an Apple laptop, a student could have versions of Windows, Linux,

Unix, and less common operating systems all available for learning and experimentation.

Paravirtualization

As we’ve seen, paravirtualization takes a different tack than the other types of virtualization.

Rather than try to trick a guest operating system into believing it has a system to itself, paravirtualization

presents the guest with a system that is similar but not identical to the guest’s preferred system.

The guest must be modified to run on the paravirtualized virtual hardware.

The gain for this extra work is more efficient use of resources and a smaller virtualization layer.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 9

The Xen VMM, which is the leader in paravirtualization, has implemented several techniques to optimize

the performance of guests as well as of the host system.

For example, as we have seen, some VMMs present virtual devices to guests that appear to be real devices.

Instead of taking that approach, the Xen VMM presents clean and simple device abstractions that allow

efficient I/O, as well as good communication between the guest and the VMM about device I/O.

For each device used by each guest, there is a circular buffer shared by the guest and the VMM via shared

memory. Read and write data are placed in this buffer, as shown in Figure 16.6.

For memory management, Xen does not implement nested page tables.

Rather, each guest has its own set of page tables, set to read-only.

Xen requires the guest to use a specific mechanism, a hypercall from the guest to the hypervisor VMM,

when a page-table change is needed.

This means that the guest operating system’s kernel code must be changed from the default code to these

Xen-specific methods.

To optimize performance, Xen allows the guest to queue up multiple page-table changes asynchronously via

hypercalls and then check to ensure that the changes are complete before continuing operation.

Xen allowed virtualization of x86 CPUs without the use of binary translation, instead requiring

modifications in the guest operating systems like the one described above.

Over time, Xen has taken advantage of hardware features supporting virtualization.

As a result, it no longer requires modified guests and essentially does not need the paravirtualization

method.

Paravirtualization is still used in other solutions, however, such as type 0 hypervisors.

Programming-Environment Virtualization

Another kind of virtualization, based on a different execution model, is the virtualization of programming

environments.

Here, a programming language is designed to run within a custom-built virtualized environment.

For example, Oracle’s Java has many features that depend on its running in the Java virtual machine (JVM),

including specific methods for security and memory management.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 10

If we define virtualization as including only duplication of hardware, this is not really virtualization at all.

But we need not limit ourselves to that definition.

Instead, we can define a virtual environment, based on APIs, that provides a set of features that we want to

have available for a particular language and programs written in that language.

Java programs run within the JVM environment, and the JVM is compiled to be a native program on

systems on which it runs. This arrangement means that Java programs are written once and then can run on

any system (including all of the major operating systems) on which a JVM is available.

The same can be said for interpreted languages, which run inside programs that read each instruction and

interpret it into native operations.

Emulation

Virtualization is probably the most common method for running applications designed for one operating

system on a different operating system, but on the same CPU.

This method works relatively efficiently because the applications were compiled for the same instruction set

as the target system uses.

Emulation is useful when the host system has one system architecture and the guest system was compiled

for a different architecture.

For example, suppose a company has replaced its out dated computer system with a new system but would

like to continue to run certain important programs that were compiled for the old system.

The programs could be run in an emulator that translates each of the out dated system’s instructions into the

native instruction set of the new system.

Emulation can increase the life of programs and allow us to explore old architectures without having an

actual old machine.

As may be expected, the major challenge of emulation is performance.

Instruction-set emulation can run an order of magnitude slower than native instructions, because it may take

ten instructions on the new system to read, parse, and simulate an instruction from the old system.

Thus, unless the new machine is ten times faster than the old, the program running on the new machine will

run more slowly than it did on its native hardware.

Another challenge for emulator writers is that it is difficult to create a correct emulator because, in essence,

this task involves writing an entire CPU in software.

In spite of these challenges, emulation is very popular, particularly in gaming circles.

Modern systems are so much faster than old game consoles that even the Apple iPhone has game emulators

and games available to run within them.

Application Containment

The goal of virtualization in some instances is to provide a method to segregate applications, manage their

performance and resource use, and create an easy way to start, stop, move, and manage them.

In such cases, perhaps full-fledged virtualization is not needed. If the applications are all compiled for the

same operating system, then we do not need complete virtualization to provide these features. We can

instead use application containment.

Consider one example of application containment. Starting with version 10, Oracle Solaris has included

containers, or zones, that create a virtual layer between the operating system and the applications.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 11

In this system, only one kernel is installed, and the hardware is not virtualized. Rather, the operating system

and its devices are virtualized, providing processes within a zone with the impression that they are the only

processes on the system.

One or more containers can be created, and each can have its own applications, network stacks, network

address and ports, user accounts, and so on.

CPU and memory resources can be divided among the zones and the system-wide processes.

Each zone in fact can run its own scheduler to optimize the performance of its applications on the allotted

resources. Figure 16.7 shows a Solaris 10 system with two containers and the standard “global” user space.

Virtualization and Operating-System Components

Operating system aspects of virtualization, including how the VMM provides core operating-system

functions like scheduling, I/O, and memory management.

How do VMMs schedule CPU use when guest operating systems believe they have dedicated CPUs?

How can memory management work when many guests require large amounts of memory?

CPU Scheduling

A system with virtualization, even a single-CPU system, frequently acts like a multiprocessor system.

The virtualization software presents one or more virtual CPUs to each of the virtual machines running on the

system and then schedules the use of the physical CPUs among the virtual machines.

The VMM has a number of physical CPUs available and a number of threads to run on those CPUs. The

threads can be VMM threads or guest threads.

Guests are configured with a certain number of virtual CPUs at creation time, and that number can be

adjusted throughout the life of the VM.

When there are enough CPUs to allocate the requested number to each guest, the VMM can treat the CPUs

as dedicated and schedule only a given guest’s threads on that guest’s CPUs.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 12

In this situation, the guests act much like native operating systems running on native CPUs.

Of course, in other situations, there may not be enough CPUs to go around.

The VMM itself needs some CPU cycles for guest management and I/O management and can steal cycles

from the guests by scheduling its threads across all of the system CPUs, but the impact of this action is

relatively minor.

Commonly, the time-of-day clocks in virtual machines are incorrect because timers take longer to trigger

than they would on dedicated CPUs. Virtualization can thus undo the good scheduling-algorithm efforts of

the operating systems within virtual machines.

To correct for this, a VMM will have an application available for each type of operating system that system

administrators install into the guests. This application corrects clock drift and can have other functions such

as virtual device management.

Memory Management

Efficient memory use in general-purpose operating systems is one of the major keys to performance.

In virtualized environments, there are more users of memory (the guests and their applications, as well as the

VMM), leading to more pressure on memory use.

Further adding to this pressure is that VMMs typically overcommit memory, so that the total memory with

which guests are configured exceeds the amount of memory that physically exists in the system.

The extra need for efficient memory use is not lost on the implementers of VMMs, who take great measures

to ensure the optimal use of memory.

For example, VMware ESX guests have a configured amount of physical memory, then ESX uses 3 methods

of memory management

1. Double-paging, in which the guest page table indicates a page is in a physical frame but the VMM

moves some of those pages to backing store

2. Install a pseudo-device driver in each guest (it looks like a device driver to the guest kernel but really

just adds kernel-mode code to the guest)

 Balloon memory manager communicates with VMM and is told to allocate or deallocate

memory to decrease or increase physical memory use of guest, causing guest OS to free or

have more memory available

3. Deduplication by VMM determining if same page loaded more than once, memory mapping the

same page into multiple guests

I/O

Easier for VMMs to integrate with guests because I/O has lots of variation

 Already somewhat segregated / flexible via device drivers

 VMM can provide new devices and device drivers

But overall I/O is complicated for VMMs

 Many short paths for I/O in standard OSes for improved performance

 Less hypervisor needs to do for I/O for guests, the better

 Possibilities include direct device access, DMA pass-through, direct interrupt delivery

 Again, HW support needed for these

Networking also complex as VMM and guests all need network access

 VMM can bridge guest to network (allowing direct access)

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 13

 And / or provide network address translation (NAT), NAT address local to machine on which

guest is running, VMM provides address translation to guest to hide its address

Storage Management

 Both boot disk and general data access need be provided by VMM

 Need to support potentially dozens of guests per VMM (so standard disk partitioning not sufficient)

 Type 1 – storage guest root disks and config information within file system provided by VMM as a

disk image

 Type 2 – store as files in file system provided by host OS

 Duplicate file -> create new guest

 Move file to another system -> move guest

 Physical-to-virtual (P-to-V) convert native disk blocks into VMM format

 Virtual-to-physical (V-to-P) convert from virtual format to native or disk format

 VMM also needs to provide access to network attached storage (just networking) and other disk

images, disk partitions, disks, etc.,

Live Migration

Taking advantage of VMM features leads to new functionality not found on general operating systems such

as live migration

Running guest can be moved between systems, without interrupting user access to the guest or its apps

Very useful for resource management, maintenance downtime windows, etc

1. The source VMM establishes a connection with the target VMM

2. The target creates a new guest by creating a new VCPU, etc

3. The source sends all read-only guest memory pages to the target

4. The source sends all read-write pages to the target, marking them as clean

5. The source repeats step 4, as during that step some pages were probably modified by the guest and

are now dirty

6. When cycle of steps 4 and 5 becomes very short, source VMM freezes guest, sends VCPU’s final

state, sends other state details, sends final dirty pages, and tells target to start running the guest

 Once target acknowledges that guest running, source terminates guest

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 14

Mobile Operating System

A mobile operating system is an operating system that helps to run other application software on mobile

devices. It is the same kind of software as the famous computer operating systems like Linux and Windows,

but now they are light and simple to some extent.

The operating systems found on smartphones include Symbian OS, iPhone OS, RIM's BlackBerry,

Windows Mobile, Palm WebOS, Android, and Maemo. Android, WebOS, and Maemo are all derived from

Linux. The iPhone OS originated from BSD and NeXTSTEP, which are related to Unix.

It combines the beauty of computer and hand use devices. It typically contains a cellular built-in modem and

SIM tray for telephony and internet connections. If you buy a mobile, the manufacturer company chooses

the OS for that specific device.

Popular platforms of the Mobile OS

1. Android OS: The Android operating system is the most popular operating system today. It is a mobile

OS based on the Linux Kernel and open-source software. The android operating system was developed by

Google. The first Android device was launched in 2008.

2. Bada (Samsung Electronics): Bada is a Samsung mobile operating system that was launched in 2010.

The Samsung wave was the first mobile to use the bada operating system. The bada operating system offers

many mobile features, such as 3-D graphics, application installation, and multipoint-touch.

3. BlackBerry OS: The BlackBerry operating system is a mobile operating system developed by Research

In Motion (RIM). This operating system was designed specifically for BlackBerry handheld devices. This

operating system is beneficial for the corporate users because it provides synchronization with Microsoft

Exchange, Novell GroupWise email, Lotus Domino, and other business software when used with the

BlackBerry Enterprise Server.

4. iPhone OS / iOS: The iOS was developed by the Apple inc for the use on its device. The iOS operating

system is the most popular operating system today. It is a very secure operating system. The iOS operating

system is not available for any other mobiles.

5. Symbian OS: Symbian operating system is a mobile operating system that provides a high-level of

integration with communication. The Symbian operating system is based on the java language. It combines

middleware of wireless communications and personal information management (PIM) functionality. The

Symbian operating system was developed by Symbian Ltd in 1998 for the use of mobile phones. Nokia was

the first company to release Symbian OS on its mobile phone at that time.

6. Windows Mobile OS: The window mobile OS is a mobile operating system that was developed by

Microsoft. It was designed for the pocket PCs and smart mobiles.

7. Harmony OS: The harmony operating system is the latest mobile operating system that was developed

by Huawei for the use of its devices. It is designed primarily for IoT devices.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 15

8. Palm OS: The palm operating system is a mobile operating system that was developed by Palm Ltd for

use on personal digital assistants (PADs). It was introduced in 1996. Palm OS is also known as the Garnet

OS.

9. WebOS (Palm/HP): The WebOS is a mobile operating system that was developed by Palm. It based on

the Linux Kernel. The HP uses this operating system in its mobile and touchpads.

Architecture of IOS

IOS is a Mobile Operating System that was developed by Apple Inc. for iPhones, iPads, and other Apple

mobile devices. iOS is the second most popular and most used Mobile Operating System after Android.

The structure of the iOS operating System is Layered based. Its communication doesn’t occur directly. The

layer’s between the Application Layer and the Hardware layer will help for Communication. The lower level

gives basic services on which all applications rely and the higher-level layers provide graphics and interface-

related services. Most of the system interfaces come with a special package called a framework.

A framework is a directory that holds dynamic shared libraries like .a files, header files, images, and helper

apps that support the library. Each layer has a set of frameworks that are helpful for developers.

CORE OS Layer:

All the IOS technologies are built under the lowest level layer i.e. Core OS layer. These technologies

include:

 Core Bluetooth Framework

 External Accessories Framework

 Accelerate Framework

 Security Services Framework

 Local Authorization Framework etc.

It supports 64 bit which enables the application to run faster.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 16

CORE SERVICES Layer:

Some important frameworks are present in the CORE SERVICES Layer which helps the iOS operating

system to cure itself and provide better functionality. It is the 2nd lowest layer in the Architecture as shown

above. Below are some important frameworks present in this layer:

Address Book Framework-

The Address Book Framework provides access to the contact details of the user.

Cloud Kit Framework-

This framework provides a medium for moving data between your app and iCloud.

Core Data Framework-

This is the technology that is used for managing the data model of a Model View Controller app.

Core Foundation Framework-

This framework provides data management and service features for iOS applications.

Core Location Framework-

This framework helps to provide the location and heading information to the application.

Core Motion Framework-

All the motion-based data on the device is accessed with the help of the Core Motion Framework.

Foundation Framework-

Objective C covering too many of the features found in the Core Foundation framework.

HealthKit Framework-

This framework handles the health-related information of the user.

HomeKit Framework-

This framework is used for talking with and controlling connected devices with the user’s home.

Social Framework-

It is simply an interface that will access users’ social media accounts.

StoreKit Framework-

This framework supports for buying of contents and services from inside iOS apps.

MEDIA Layer:

With the help of the media layer, we will enable all graphics video, and audio technology of the system. This

is the second layer in the architecture. The different frameworks of MEDIA layers are:

ULKit Graphics-

This framework provides support for designing images and animating the view content.

Core Graphics Framework-

This framework support 2D vector and image-based rendering and it is a native drawing engine for iOS.

Core Animation-

This framework helps in optimizing the animation experience of the apps in iOS.

Media Player Framework-

This framework provides support for playing the playlist and enables the user to use their iTunes library.

AV Kit-

This framework provides various easy-to-use interfaces for video presentation, recording, and playback of

audio and video.

Open AL-

This framework is an Industry Standard Technology for providing Audio.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 17

Core Images-

This framework provides advanced support for motionless images.

GL Kit-

This framework manages advanced 2D and 3D rendering by hardware-accelerated interfaces.

COCOA TOUCH:

COCOA Touch is also known as the application layer which acts as an interface for the user to work with

the iOS Operating system. It supports touch and motion events and many more features. The COCOA

TOUCH layer provides the following frameworks:

EvenKit Framework-

This framework shows a standard system interface using view controllers for viewing and changing events.

GameKit Framework-

This framework provides support for users to share their game-related data online using a Game Center.

MapKit Framework-

This framework gives a scrollable map that one can include in your user interface of the app.

PushKit Framework-

This framework provides registration support.

Features of iOS operating System:

1. Highly Securer than other operating systems.

2. iOS provides multitasking features like while working in one application we can switch to another

application easily.

3. iOS’s user interface includes multiple gestures like swipe, tap, pinch, Reverse pinch.

4. iBooks, iStore, iTunes, Game Center, and Email are user-friendly.

5. It provides Safari as a default Web Browser.

6. It has a powerful API and a Camera.

7. It has deep hardware and software integration

Applications of IOS Operating System:

1. iOS Operating System is the Commercial Operating system of Apple Inc. and is popular for its

security.

2. iOS operating system comes with pre-installed apps which were developed by Apple like Mail, Map,

TV, Music, Wallet, Health, and Many More.

3. Swift Programming language is used for Developing Apps that would run on IOS Operating System.

4. In iOS Operating System we can perform Multitask like Chatting along with Surfing on the Internet.

Advantages of IOS Operating System:

1. More secure than other operating systems.

2. Excellent UI and fluid responsive

3. Suits best for Business and Professionals

4. Generate Less Heat as compared to Android.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 18

Disadvantages of IOS Operating System:

1. More Costly.

2. Less User Friendly as Compared to Android Operating System.

3. Not Flexible as it supports only IOS devices.

4. Battery Performance is poor.

Android architecture

Android architecture contains different number of components to support any android device needs.

Android software contains an open-source Linux Kernel having collection of number of C/C++ libraries

which are exposed through an application framework services.

Among all the components Linux Kernel provides main functionality of operating system functions to

smartphones and Dalvik Virtual Machine (DVM) provide platform for running an android application.

The main components of android architecture are following:-

1. Applications

2. Application Framework

3. Android Runtime

4. Platform Libraries

5. Linux Kernel

Pictorial representation of android architecture with several main components and their sub components –

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 19

Applications

Applications is the top layer of android architecture. The pre-installed applications like home, contacts,

camera, gallery etc and third party applications downloaded from the play store like chat applications, games

etc. will be installed on this layer only.

It runs within the Android run time with the help of the classes and services provided by the application

framework.

Application framework

Application Framework provides several important classes which are used to create an Android application.

It provides a generic abstraction for hardware access and also helps in managing the user interface with

application resources. Generally, it provides the services with the help of which we can create a particular

class and make that class helpful for the Applications creation.

It includes different types of services activity manager, notification manager, view system, package manager

etc. which are helpful for the development of our application according to the prerequisite.

Application runtime

Android Runtime environment is one of the most important part of Android. It contains components like

core libraries and the Dalvik virtual machine (DVM). Mainly, it provides the base for the application

framework and powers our application with the help of the core libraries.

Like Java Virtual Machine (JVM), Dalvik Virtual Machine (DVM) is a register-based virtual machine and

specially designed and optimized for android to ensure that a device can run multiple instances efficiently. It

depends on the layer Linux kernel for threading and low-level memory management. The core libraries

enable us to implement android applications using the standard JAVA or Kotlin programming languages.

Platform libraries

The Platform Libraries includes various C/C++ core libraries and Java based libraries such as Media,

Graphics, Surface Manager, OpenGL etc. to provide a support for android development.

Media library provides support to play and record an audio and video formats.

Surface manager responsible for managing access to the display subsystem.

SGL and OpenGL both cross-language, cross-platform application program interface (API) are used for 2D

and 3D computer graphics.

SQLite provides database support and FreeType provides font support.

Web-Kit This open source web browser engine provides all the functionality to display web content and to

simplify page loading.

SSL (Secure Sockets Layer) is security technology to establish an encrypted link between a web server and

a web browser.

Linux Kernel

Linux Kernel is heart of the android architecture. It manages all the available drivers such as display drivers,

camera drivers, Bluetooth drivers, audio drivers, memory drivers, etc. which are required during the runtime.

The Linux Kernel will provide an abstraction layer between the device hardware and the other components

of android architecture. It is responsible for management of memory, power, devices etc.

UNIT - V CASE STUDY AIML

Mr. R.MANICKAVASAGAN, AP/CSE 20

The features of Linux kernel are:

Security: The Linux kernel handles the security between the application and the system.

Memory Management: It efficiently handles the memory management thereby providing the freedom to

develop our apps.

Process Management: It manages the process well, allocates resources to processes whenever they need

them.

Network Stack: It effectively handles the network communication.

Driver Model: It ensures that the application works properly on the device and hardware manufacturers

responsible for building their drivers into the Linux build.

